MATH141 Summer I

Exam 1 [100 pt]
Instructions: Number the answer sheets from 1 to 4 and fill out all the information in each of them (sign the Honor Pledge on page 1 only). Solve only one problem in every answer sheet. If you need more space to solve a given problem, use the back of the same answer sheet. No lecture notes, cheat sheets, books, or electronic devices of any kind are allowed.

1. $[20 \mathrm{pt}]$
(a) Let R be the region enclosed by the graphs of $f(x)=x \sin \left(x^{3}\right)$ and $g(x)=0$ for $0 \leq x \leq \sqrt[3]{\pi}$. Calculate the volume of the solid obtained by revolving the region R about the y-axis.
(b) Let R be the region enclosed by the graphs of $f(x)=x+2$ and $g(x)=x^{2}$. Calculate the volume of the solid obtained by revolving the region R about the x-axis.
2. [20 pt] Let $f(x)=x^{2}-\frac{1}{8} \ln x$ for $1 \leq x \leq e$. Find the length of the graph of f.
3. [20 pt] Find the center of gravity of the quarter of a circle enclosed by the graphs of $f(x)=\sqrt{4-x^{2}}, g(x)=0$ and $x=0$.
You may use the fact that the area of a circle of radius r is equal to πr^{2}.
Justify any symmetry argument analytically (with formulas). In particular, write the formulas for the moments and the area of the region.
4. [20 pt] A tank has the shape of an inverted cone with depth equal to 2 ft and diameter equal to 4 ft at the top of the tank. The tank is initially filled with a liquid weighing 100 $\mathrm{lb} / \mathrm{ft}^{3}$.
Calculate the amount of work required to pump all the liquid to a level 2 feet above the top of the tank.
5. [20 pt] The equations $x=3 \cos ^{3} t, y=3 \sin ^{3} t$ for $0 \leq t \leq 2 \pi$ parametrize an astroid.
(a) Calculate the length of the segment of this astroid for $0 \leq t \leq \frac{\pi}{2}$.
(b) Calculate the length of the curve for $0 \leq t \leq 2 \pi$. For this second part only: keep in mind that $\sqrt{y^{2}}=|y|$.
