MATH141 Fall 2019 Exam 3 [100 pt]

Instructions: Number the answer sheets from 1 to 4 and fill out all the information in each of them (sign the Honor Pledge on page 1 only). Solve only one problem in every answer sheet. If you need more space to solve a given problem, use the back of the same answer sheet. No lecture notes, cheat sheets, books, or electronic devices of any kind are allowed.

1. [20 pt] Calculate the following integrals

(a)
$$\int_0^{\pi/2} \sin^2 x \cos^2 x dx$$

(b)
$$\int \tan^5 x \sec^4 x dx$$

2. [20 pt] Calculate the following integrals

(a)
$$\int \frac{x}{\sqrt{9-x^2}} dx$$

(b)
$$\int_{\sqrt{2}}^2 \frac{1}{x^2 \sqrt{x^2-1}} dx$$

3. [20 pt] Calculate the following integrals

(a)
$$\int_{0}^{1} \frac{x-1}{x^{2}+3x+2} dx$$

(b) $\int \frac{1}{x(x-1)^{2}} dx$

4. [20 pt] Determine if the following integrals converge. If they do, find their values.

(a)
$$\int_0^\infty \frac{x}{(x^2+2)^2} dx$$

(b) $\int_1^2 \frac{1}{x(\ln x)^{1/2}} dx$

5. [20 pt]

(a) Fill in the blanks to give an approximation to $\int_2^4 \frac{1}{x} dx$ using the trapezoidal rule with n = 4.

$$\int_{2}^{4} \frac{1}{x} dx \approx ---- \left[----+ ---+ ---- + ---- \right]$$

(b) Find a bound for the error made using this approximation.

Hint: for the trapezoidal rule $E_n^T \leq \frac{K_T}{12n^2}(b-a)^3$, with $K_T = \max_{a \leq x \leq b} |f''(x)|$

T 7 1	C 1			• • •	c		1
Values	of th	he trigo	nometric	integrals	tor	some	angles:
1 001 01 00	01 UI		11011100110	moogram	TOT	00110	cardioo.

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos heta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
an heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined