MATH141 Fall 2019

Exam 3 [100 pt]
Instructions: Number the answer sheets from 1 to 4 and fill out all the information in each of them (sign the Honor Pledge on page 1 only). Solve only one problem in every answer sheet. If you need more space to solve a given problem, use the back of the same answer sheet. No lecture notes, cheat sheets, books, or electronic devices of any kind are allowed.

1. $[20 \mathrm{pt}]$ Calculate the following integrals
(a) $\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{2} x d x$
(b) $\int \tan ^{5} x \sec ^{4} x d x$
2. [20 pt] Calculate the following integrals
(a) $\int \frac{x}{\sqrt{9-x^{2}}} d x$
(b) $\int_{\sqrt{2}}^{2} \frac{1}{x^{2} \sqrt{x^{2}-1}} d x$
3. [20 pt] Calculate the following integrals
(a) $\int_{0}^{1} \frac{x-1}{x^{2}+3 x+2} d x$
(b) $\int \frac{1}{x(x-1)^{2}} d x$
4. [20 pt] Determine if the following integrals converge. If they do, find their values.
(a) $\int_{0}^{\infty} \frac{x}{\left(x^{2}+2\right)^{2}} d x$
(b) $\int_{1}^{2} \frac{1}{x(\ln x)^{1 / 2}} d x$
5. $[20 \mathrm{pt}]$
(a) Fill in the blanks to give an approximation to $\int_{2}^{4} \frac{1}{x} d x$ using the trapezoidal rule with $n=4$.

$$
\int_{2}^{4} \frac{1}{x} d x \approx-[-++\quad+\quad+\square]
$$

(b) Find a bound for the error made using this approximation.

Hint: for the trapezoidal rule $E_{n}^{T} \leq \frac{K_{T}}{12 n^{2}}(b-a)^{3}$, with $K_{T}=\max _{a \leq x \leq b}\left|f^{\prime \prime}(x)\right|$

Values of the trigonometric integrals for some angles:

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined

