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My research focuses on using mathematical tools to tackle problems related to data science, machine
learning, and numerical optimal transportation. I am particularly interested in deepening mathematical
understanding in these areas of application and in developing and adapting the mathematical tools needed
for this purpose.

More speci�cally, I use methods from the theory of partial di�erential equations (PDE), calculus of vari-
ations, convex analysis, non-smooth analysis, and optimal transportation to study problems in which one
needs to relate discrete and continuum settings. I have focused on problems from several related areas: non-
convex optimization problems related to machine learning (implicit regularization in nonconvex optimization
problems [19]), mathematical problems coming from data science (PDE-based variational methods for sta-
tistical depths [23],[24], [25]) and applied optimal transportation (regularity of optimal transportation plans
for rough measures [11]). Some of the key underlying themes of my work is the use of variational methods
and the connection of continuum variational problems on smooth measures and variational problems posed
on approximating discrete objects.

Speci�c problems I have worked on and some directions I plan to pursue in the future include:

1. Implicit regularization in accelerated descent methods

As a Postdoctoral Associate at Brandeis University, I have been working in nonconvex optimization
problems coming from machine learning. More speci�cally, in a collaboration with Prof. Tyler Maunu,
we have shown in [19] that there is an implicit regularization e�ect in the phase retrieval problem for
Polyak's Heavy Ball and Nesterov Accelerated Gradient methods when the measuring vectors are chosen
from a Gaussian distribution. That is, the method converges to a global minimizer at an accelerated
rate even though the loss function is non-convex. This result can be understood by considering than for
this type of sampling, the corresponding loss function is strongly convex and smooth in expectation. We
have also veri�ed these �ndings experimentally and observed that the methods do achieve the expected
accelerated rate in practice.

We are currently working in extending this result to more general methods that might depend on the
gradient at all previous time steps, and in extending the proof of implicit regularization to the low-rank
matrix completion problem. Namely, given a low rank matrix and a subset of observations of its entries
we would like to reconstruct the original matrix as closely as possible.

2. PDE-based variational methods for statistical depths. As a Postdoctoral Research Scholar at
North Carolina State University, in collaboration with Prof. Ryan Murray, one of the projects I worked
on was a PDE-based formulation for the study of the Tukey statistical depth. I have recently shown in
a paper with Murray [23] that, for reasonably smooth probability densities, the Tukey depth satis�es an
equation of the Hamilton-Jacobi type at the points of di�erentiability. We have shown as well that the
viscosity solution of this equation is well-posed in any dimension and that it coincides with the Tukey
depth of the distribution for probability distributions with compact and convex supports on the plane.
More recently, Prof. Murray and I have been working [25] on an alternative numerical algorithm that
relies on geometric characterization of Tukey depths and does not resort to �nite di�erence schemes. This
method allows us to approximate the Tukey depth of an arbitrary distribution in any dimension and the
approximations agree with closed form solutions for the very few cases where they are available.
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On a previous project with Prof. Murray [24] we proposed and studied a novel concept of statistical
depth based on optimal control. A strong motivation to introduce this concept is to replace the nonlocal
equation for the Tukey depth introduced in [23] with a local equation of the eikonal type. Our approach
relies on solving our eikonal equation on graphs numerically, an approach that allows us to directly use
this depth for probability distributions on manifolds and in general discrete settings. An example of the
notion of centrality that can be de�ned on the digits of the MNIST set using our scheme is shown in
Figure 1.

Future research directions in connection with Tukey depths include proving that, in any dimension,
viscosity solutions of the Hamilton-Jacobi equation we derived in [23] correspond to the Tukey depth for
log concave measures with convex support. Prof. Murray and have found that this correspondence is true
in two dimensions and that a result based on Brunn-Minkowski theorem for convex bodies could be useful
to extend this equivalence to an arbitrary dimension. Our alternative method to calculate Tukey depths
based on the Hamilton-Jacobi equation introduced in [23] uses derivatives of moments of slices of the
measure and relies on approximating this measure as a sum of Gaussian distributions of small bandwidth.
Another research direction I would like to pursue is to use Monte-Carlo methods to calculate derivatives
of the moments of slices of the measure directly and in this way eliminate the error introduced by the
Gaussians' bandwidth.

3. Regularity of optimal transportation plans for rough measures. My PhD thesis work at UMD
concerned the regularity of optimal transportation plans for measures that are not necessarily absolutely
continuous. In [11], a joint work with Jabin and Mellet, we derived quantitative C1 regularity estimates
for any Kantorovich potential between measures that are only absolutely continuous up to a certain scale,
for instance discretizations of absolutely continuous measures on grids of given widths. These results
extend the classical result of regularity of optimal transportation maps for measures that are absolutely
continuous and open the doors to quantifying the relation between the optimal transportation problem
posed in terms of absolutely continuous measures and a discrete optimal transportation problem that
approximates it, a direction that is of interest for numerical optimal transportation.

A future research direction that is closely related to both my work on regularity of optimal transportion
for rough measures and statistical depths is the study of some analytical properties of the Wasserstein
statistical depth [7], de�ned in terms of Tukey depths and optimal transportation. The Wasserstein
statistical depth has a variational structure and I plan to use tools from optimal transportation to �nd
convergence rates between the discrete and continuum scales, and to deepen mathematical understanding
of the algorithms used to calculate this statistical depth.

This is not an exhaustive list of my research plans, and I would be excited to develop new colaboration
projects with faculty at your department.

Figure 1: This �gure shows an example of the notion of centrality that can be established using statistical
depths. The histogram shows the digits labeled '4' in the MNIST classi�ed into groups according to the level
sets of the depth we propose in [24]. For each class the number of samples depicted depends on the size of
the class. We can observe that the legibility of the handwriting increases with depth.
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1 Implicit regularization in accelerated descent methods

The phase retrieval problem consists in �nding x∗ ∈ Rn from a set of measurements yi = (aTi x∗) with
respect to a set {ai}mi=1 ⊂ Rd. For this purpose, we consider the minimization of the following objective
function:

f(x) =
1

4m

m∑
i=1

((aTi x)2 − y2
i )2. (1)

This problem is nonconvex in general which makes it theoretically hard to solve. One strategy to address this
issue is to modify the standard gradient descent minimization procedure, namely xt+1 = xt−ηt∇f(xt), t ≥ 0
to explicitely force convergence to a global minimizer. For instance, one can add a penalization term R(x)
to the descent update rule: xt+1 = xt + ηt(∇f(xt) +∇R(xt)).

However, it is known that for certain choices of the vectors {ai}, for instance ai sampled from a normal
distribution N (0, I), using standard gradient descent to minimize the loss function (1) works exceptionally
well [17]. This is referred to as a bias in the algorithm or implicit regularization in the algorithm for the
nonconvex minimization problem (1).

Recently, in collaboration with Prof. Tyler Maunu [19], we have shown that this phenomenon extends to
other accelerated gradient methods for the nonconvex minimization problem (1), more speci�cally we have
obtained accelerated convergence rates with certain probability guarantee for the Polyak's Heavy Ball and
Nesterov's Fast Gradient methods when the vectors {ai} are sampled from a Gaussian distribution N (0, I).
These two methods are de�ned as

xt+1 = xt − η∇f(xt) + β(xt − xt−1) (2)

where x1 = x0 and
xt+1 = xt − η∇f(xt + β(xt − xt−1)) + β(xt − xt−1). (3)

Our result can be stated as:

Theorem 1.1. Let x∗ be a �xed vector and ai
iid∼ N (0, I). Provided that 0 ≤ η . rac1log n‖x0‖2 for some

initialization x0, m & n log n, β =
C
√

log n−
√

1/2

C
√

log n+
√

1/2
, for some su�ciently large constant C, then there

exists a constant 0 < ε < 1 such that with probability at least 1−O(mn−5), (2) and (3) achieve the following
convergence rate

dist(xt, x∗) ≤ ε(1−
√
η‖x∗‖2/2)t‖x∗‖

where dist(x, x∗) = min{‖x− x∗‖, ‖x+ x∗‖}.

The essential part of the proof is to show that the iterations produced by (2) remain, with certain

probability, in a nice region in which f can be considered as strongly convex and smooth for vectors ai
iid∼

N (0.I). In fact, using rough bounds, when ai are sampled from a Gaussian, we have that I � ∇2f(x) � 10I
in expectation.

Future directions

� Implicit regularization in multi-step accelerated methods. Both Heavy Ball and Nesterovs method
are examples of more general accelerated methods that consider the value of the gradient of f at previous
timesteps. For instance, Heavy Ball iterations can be written as

xt+1 − xt = −η
t∑
i

βt−i∇f(xt).
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As a future research direction, I plan to study the implicity regularization of methods of the form

xt+1 = xt − η
t∑
i=1

αti∇f(xi)

for some sequence of weights {αti}∞i=1
∞
t=1, which would be a natural generalization of the results described

in this section.

� Implicit regularization in low-rank matrix completion. I also expect to prove an analogous result
to Theorem 1.1 for the problem of low-rank matrix completion, namely where we want to recover a low
rank matrix M∗ ∈ Rn×n from an incomplete subset of its entries. In mathematical terms, if M∗ is a
positive semide�nite, r-rank matrix (with r � n), i.e. M∗ = X∗X

T
∗ with X∗ ∈ Rn×r, and we know some

entries
Yi,j = [M∗]ij = [X∗X

T
∗ ]i,j , (i, j) ∈ S

for a set S of m indices, we want to solve the minimization problem

min
X∈Rn×r

f(X) =
n2

4m

∑
(i,j)∈S

(Yi,j − eTi XXT ej)
2,

where {ei}ni=1 is the canonical vector basis in Rn.

2 PDE-based Variational Methods for Statistical Depths

2.1 Tukey depth and HJB equations

As a Postdoctoral Research Scholar at NCSU, in colaboration with Prof. Ryan Murray, I worked on
PDE-based methods for problems related to machine learning. In particular, I studied PDE-based variational
approaches applicable to a wide variety of statistical depths de�ned in continous and discrete settings.

In simple terms, statistical depths are functions that measure how deep a point is within a given point
cloud and are useful for de�ning medians. The level sets of a statistical depth provide a natural way to
establish an order in a dataset. For example, data depths can be used to detect and handle outliers in a data
set for classi�cation purposes [28] [12] and for functional data analysis [4]. An instance of the classi�cation
result that can be achieved on the MNIST dataset with one of our PDE-based statistical depths is shown in
Figure 1. We have used all of the 70000 hand-written digits in the set, considered as points in R28×28.

Statistical depths are commonly de�ned on sets of data points, and one of the most widely used is the
Tukey depth. Generalizations of the Tukey depth to a functional setting have also been used to study brain
data and handwriting recognition [5]. For a given point cloud {xi}Ni=1 ⊂ Rd and some discrete measure

µN =
∑N
i=1 αiδxi

the Tukey depth on the point cloud is de�ned as

dT (xi, µN ) = min{µN (H)|H is a closed halfspace with xi ∈ H}. (4)

It is reasonable to expect that, when the number of data points increases, this discrete optimization
problem approaches the following continuum variational problem. For a general probability distribution µ
in Rd the Tukey depth at the point x is de�ned as

dT (x, µ) = inf{µ(H)|H is a closed halfspace with x ∈ H}.

This formulation has already been used [6, 29, 18] in the context of empirical approximations to the
continuum problem. The goal of reformulating the depth in this way is to use tools from the calculus of

4



variations and the theory of partial di�erential equations to gain additional insight on the problem and to
provide alternative ways to calculate the Tukey depth. In a recent paper with Murray [23], we have shown
that the Tukey depth dT (·, µ) for an absolutely continuous measure with a continuous density ρ can be
related to viscosity solutions [3] of the following equation of the Hamilton-Jacobi type:

H(x,∇u(x)) = |∇u(x)| −
∫

(y−x)· ∇u
|∇u|=0

ρ(y)dHd−1(y) = 0. (5)

One of the main results of our recent paper [23] demonstrates that the more general theory of viscosity
solutions can be adapted for this problem in certain situations. We have proved the following result [23]:

Theorem 2.1. Assume that µ is an absolutely continuous measure with a continuous density ρ whose support
is S for an open and bounded set S ⊂ Rd. Let us de�ne Ω = co(S), the closure of the convex hull of S, and
let us assume that

∫
p·(ξ−x)=0

ρ(ξ)dHd−1 ≥ δ(x) for any p ∈ Rn and any x ∈ Ω, with δ(x) = 0 only if x ∈ ∂Ω.

Then there exists a unique viscosity solution of equation (5) with u = 0 on ∂Ω.

Additionally, if S ⊂ R2 is convex and µ is uniformly distributed, then the Tukey depth dT (·, µ) coincides
with this viscosity solution. In any other case, including when Rd, the viscosity solution provides an upper
bound for the Tukey depth dT (·, µ).

The structure of equation (5) bears a close resemblance to that of the Eikonal equation. Recasting the
problem of calculating the Tukey depth as a PDE opens the possibility of applying a wide variety of numerical
techniques for Hamilton-Jacobi equations and viscosity solutions of nonlinear partial di�erential equations.
For instance, in a recent paper [2] a �nite di�erence scheme to calculate the Tukey depth of measures with
continuous densities was constructed using formulation (5) and the theoretical guarantee that the equation
is well posed provided by Theorem 2.1. Having alternative approaches to calculate Tukey depths is valuable
because the methods used to solve the optimization problem (4) are combinatorial in nature [16, 22] and
costs of the order of the order O(Nd−1 logN) that does not scale well in the number of data samples [15].

2.2 Eikonal depth

Prof. Murray and I have proposed [24] the following depth based on control theory and the eikonal
equation: For probability distributions µ with continuous densities ρ with support in all of Rd (alternativerly,

(a) Uniform distribution on a square (b) Uniform distribution on triangle

Figure 2: Shown in the picture are the level sets of the Tukey depth on a square and a triangle for uniform
distributions.

5



with compact support S ⊂ Rd) and a non-decreasing function φ that maps R+ to R+, we de�ne the eikonal
depth deik(x, µ) as the viscosity solution of the equation

|u(x)| = φ(ρ(x))

with boundary conditions lim‖x‖→∞ u(x) = 0 (alternatively, with u = 0 on ∂S).

We are mainly interested in the cases when φ(s) = s1/d and φ(s) = s. In the latter and for a density
with support in all of Rd, calculating deik(x, µ) is equivalent to solving the optimal control problem

inf
Ux

∫ ∞
0

ρ(x(τ))|ẋ(τ)|dτ

where Ux is the set of paths starting at x and such that limτ→∞ x(τ) = ∞. This depth can therefore be
interpreted as the minimum amount of mass a particle needs to go through to escape to in�nity. This
equivalent formulation of the eikonal depth has allowed us to prove [24] properties such as the existence of
local maxima of the depth near local maxima of the density, which is desirable for multimodal distributions.

The study of variational problems on graphs and their continuum limits have received a lot of attention
in recent years [33, 34] due to their various applications in machine learning, among which are supervised
and unsupervised learning on data points. In our paper [24] we calculate the eikonal depth using a discrete
scheme on graphs whose generalization to densities on manifolds is immediate. We consider a set of data
points {Xi}ni=1 ⊂ Rd and construct a weighted graph with weights given by

wij =
σ

hdn
η

(
|Xi −Xj |

h

)
where η : R → R is a kernel that describes the degree to which two points are related depending on the
distance that separates them, h is a kernel bandwith and σ is a normalizing constant. A heuristic calculation
[24] shows that it makes sense to use the following di�erence scheme

ρi =
∑
j∼i

h−2wij(0, ui − uj)2
+.

2.3 Alternative Geometric Method to Calculate Tukey depth

In a more recent collaboration with Prof. Murray, I have worked [25] on an alternative method to
approximate the Tukey depth of an arbitrary distribution that does not resort to �nite di�erence schemes
and uses instead purely geometric characterizations of Tukey depth that are related to convex geometry.

We can think of convex sets as uniformly distributed measures with convex support. In convex geometry,
the �oating body K[δ] of index δ > 0 of a convex set K is de�ned as the nonempty convex subset of K such
that any supporting hyperplane to K[δ] cuts o� a set of volume δ from K.

When the �oating body of K exists, a supporting hyperplane H to K[δ] touches the boundary of of K[δ]

at exactly one point x, the center of mass of the slice H∩K. Using the formula for the Tukey depth that we
introduced in [23] we can show that for an arbitary continuous density a necessary condition for a hyperplane
H to realize the minimum in the Tukey depth at a point x is that the centroid of the intersection of the
plane and the support of the density is equal to x. Thus, for a uniform density with convex support, when
the �oating bodies of its support exist for all δ they coincide with the level sets of the Tukey depth.

Floating bodies do not exist in general for any convex set, but it is know [21] that if the setK is symmetric,
namely both x and −x are in K, and its boundary is C2 then its �oating bodies exists for all 0 ≤ δ < 1/2.
Prof Murray and I have been able to obtain a similar result in [25] for log concave densities with support in
Rd in the sense that if ρ is a log concave density that is symmetric, then all of the subsets constructed by
cutting o� an amount of mass equal to δ are convex and correspond to the level sets of the Tukey depth of
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Figure 3: This �gure shows xc for consecutive iterations of our method for the sum of two Gaussian densities
with σ = 1 and means (0, 0) and (1, 1)

ρ. Also, to �nd the hyperplane that realizes the minimum in the de�nition of Tukey depth at a point x we
only need to �nd p ∈ Sd−1 so that

F (x, p) =

∫
p·(y−x)=0

ρ(y)(y − x)dHd−1 = 0.

We also have devised an iterative numerical method in [25] to calculate the p that realizes the Tukey
depth at the point x based on this result. Starting from an inital guess (x0, p0) and calling (xc, pc) the
current calculated values, we can add the correction ∆p = (−DpF (xc, pc))

−1DxF (xc, pc)(x − xc) at each
time step. The next value of xc is then calculated by �nding the centroid of the slice of ρ with normal vector
pc. This procedure is illustrated in Figure 3 for a sum of two Gaussian densities.

Our result in [25] justi�es the use of this method for log concave measures with support in all of Rd.
However, we have found that our method approximates the Tukey depth to great accuracy for a much wider
class of densities, as long as they are symmetric, by approximating them as

ρ̄(x) =
1

N

N∑
i=1

1

(2π)d/2σd
exp

(
−‖x− xi‖

2

2σ2

)
(6)

where xi are samples from ρ. Examples of densities that can be treated using this approximation include
uniform densities on convex polygons and arbitrary mixtures of Gaussians.

Future directions

� Tukey Depths. I plan to study the stability of solutions of (5) with respect to the input measure µ, and
use these results to study the convergence of the discrete Tukey depth to the continuous Tukey depth. I
am particularly interested in studying the relation between the Tukey depth for a discrete measure and
the Tukey depth for the corresponding molli�ed measure, and also in deriving the rates of convergence of
a minimizer of the discrete problem to a minimizer of the continuous approximation of the problem.

� Convex Geometry and Tukey depth as a viscosity solution in higher dimensions. The level sets
of the Tukey depth of a uniform distribution with compact and convex support have been studied in convex
geometry under the name of �oating bodies. A classical result in convex geometry by Buseman, which
is a counterpart to Brunn-Minkowski theorem, states that the intersection body of an origin-symmetric
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convex body is also convex [8]. Attempting to extend our result on the equivalence of viscosity solutions
of our PDE model to the Tukey depth to higher dimensions naturally leads to the need for a similar result
to Buseman's. Prof. Murray and I have found that Buseman's result still holds for convex bodies that
just satisfy a balanced-moments condition but are not necessarily symmetric with respect to the origin.
This result will be the base to show that Tukey depths coincide with the unique viscosity solution of (5)
in arbitary dimensions.

� Geometric Method to calculate Tukey depths. The expressions for DxF , DpF , and those used to
calculate the centroids used in our algorithm cannot be solved exactly for densities in general. In our
experiments we have instead approximated the measures as sums of Gaussian densities (6). A direction I
plan to explore is to calculate these expresions using Monte-Carlo methods to eliminate the intrinsic error
that the bandwidths of the Gaussians cause.

Additionally, I plan to extend the result of Meyer-Reissner [21] to probability densities that are log concave,
have convex support, and whose boundary is smooth (C2). Namely, I would like to prove that the level
sets of the Tukey depth for such measures are all smooth and are fully characterized by the fact that
supporting hyperplanes touch them exactly at the centroid of the slice obtained as the intersection of the
hyperplane and the support of the measure.

3 Regularity of Optimal Transportation Plans for Rough Measures

Another part of my research concerns the regularity of optimal transportation for general measures.
Optimal transportation have been used in a variety of applications in recent years. For instance, it is used in
biomedical imaging to evaluate the evolution of pictures of an organ over time [9] [10]. Another application
of optimal transportation is super resolution [14], where a high resolution image is generated from a low
resolution one by solving a minimization problem on a set of transformations between images in a training
set.

These applications involve the optimal transportation problem for the quadratic cost and are based on
the approximation of absolutely continuous measures by sums of point masses. Given two discrete measures
µ =

∑
i aiδxi

, ν =
∑
j bjδyj and the matrix cost cij = ‖xi−yj‖2 the optimal transportation problem consists

of �nding

arg min
∑
i

∑
j

cijγij (7)

among all matrices γ with γij ≥ 0 that satisfy
∑
j γij = ai,

∑
i γij = bj . More generally, given X,Y ⊂ Rd

and probability measures µ, ν in X,Y the optimal transportation problem for the quadratic cost is to �nd

arg inf

∫
‖x− y‖2dπ (8)

among all π probability measures in X × Y with marginals µ and ν (i.e. π(A × Y ) = µ(A), π(X × B) =
ν(B)). For any measures µ and ν, the existence of an optimal plan π that solves Kantorovich problem
(8) is guaranteed [35]. Although π is not necessarily unique, its support is contained in the graph of the
subdi�erential of a convex function ψ (referred to as a Kantorovich potential [35])

supp(π) ⊂ {(x, y) ∈ X × Y |y ∈ ∂ψ(x)}.

It is a classical result that if µ is absolutely continuous, the Kantorovich potential is unique up to a constant
and π = (Id×∇ψ)#µ [1] [20] .

The importance of regularity of solutions of this problem for discrete measures is highlighted in a recent
work by Cuturi [31]. The solution to the linearly constrained problem (7) might in principle be dense,
causing the problem to be too costly to solve, even if we expect that the support of the optimal plan is
close to being the graph of a function if the discrete measures are approximations of absolutely continuous
measures. Based on the results obtained in [31], using potentials that are strictly convex and C1-continuous
is necessary for e�cient numerical calculations for the fully discrete problem.
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My contribution to regularity results of the solution to problem (8) has been to prove in [11] that the
Kantorovich potential ψ is C1 even if µ and ν are not necessarily absolutely continuous. As there is no
analogous of Monge-Ampere equation for ψ in this general setting, Ca�arelli's classical regularity theory for
the problem is no longer applicable. However, by using the optimal transportation problem directly I proved
the following regularity result. For open, bounded, and convex sets Ω1,Ω2 ⊂ R2 I considered measures µ, ν
that satisfy

Assumption 1. Assume there are constants h1, h2 > 0 and λ1, λ2 > 0 such that µ and ν satisfy

µ(R) ≤ λ2|R| and
|R′|
λ1
≤ ν(R′)

for any rectangles R ⊂ Ω1, R
′ ⊂ Ω2 with dimensions at least h1 and h2 in every direction for R and R′

respectively.

Assumption 1 can be interpreted as absolute continuity and boundedness for µ and ν up to the resolution
of the scale. For instance, for a pointed partition {Ui, xi}i=1,..,N and an absolutely continuous measure

µ′ = fdx ≤ λ′2 the measure µ =
∑N
i=1 µ

′(Ui)δxi
satis�es Assumption 1 provided h1 is small enough (for some

λ1, λ2 depending on λ
′
1, λ
′
2 and the geometry of the partition). This is a more general discrete approximation

to a measure than the computational method for discrete approximations of measures considered in [30].

Let Ωδi be the set of points in Ωi at a distance at least δ away from the boundary, then I proved that [11]:

Theorem 3.1 ((C1 regularity of ψ)). Let ψ be a Kantorovich potential for the problem (8) between measures
that satisfy Assumption 1 and let Ωδ2 = ∂ψ(Ωδ1). There are functions ρ(`), ρ1(`), ρ2(`) monotone increasing,
with limit 0 when ` → 0+, that depend only on δ, λ1, λ2, diam(Ω2) and diam (∂ψ(Ωδ1)) such that for all
(x, x′) ∈ Ωδ1 × Ωδ1 we have

|y − y′| ≤ max(ρ(|x− x′|), ρ1(h1), ρ2(h2)) for all y ∈ ∂ψ(x), y′ ∈ ∂ψ(x′)

Theorem 3.1 states that, up to scales that depend on h1, h2, ψ is C1. The key concepts in the proof of
theorem 3.1 are convex duality and strict convexity. Under Assumption 1 on the measures µ and ν, it can
be shown that the conjugate of ψ:

ϕ(y) = sup
x∈Ω1

(x · y − ψ(x))

is strictly convex up to scales that depends on h1, h2. A classical result [32] states that strict convexity of a
convex function f at a point y implies the di�erentiability of its conjugate at the point x ∈ ∂f(y). Theorem
3.1 can be seen as an analogous quantitative result for ψ.

Future Directions

� For classi�cation purposes some authors, such as in [26], [26], and [13], have looked into linear embeddings
of the space of probability measures into a space of functions. For a reference absolutely continuous
measure σ ∈ P(Rd) we can look at the embedding Fσ : P(Rd) → L2(Rd, σ) de�ned as µ ∈ P(Rd) 7→ Tµσ ,
where Tµσ is the unique optimal transport map that pushes σ to µ guaranteed by theory.

One of the reasons for using this embedding for image classi�cation is that computing distances in
L2(Rd, σ), usingW2(µi, µj), is less computationally expensive than in P(Rd), using

∫
‖Tµi

σ (x)−Tµj
σ (x)‖dσ(x).

The authors in [27] show that if two measures are similar up to small perturbations of shifts and scalings,
such as the elements corresponding to a certain digit in MNIST, then the distance between them in P(Rd)
is close to the distance between their embeddings in L2(Rd, σ). It is also shown that if two sets of measures
in P(Rd) are far enough, then their embeddings in L2(Rd, σ) are linearly separable.

Although the theoretical results in [27] are solely for absolutely continuous measures in Rd, the authors
show, through a series of experiments, that this idea works well in practice for image classi�cation. Their
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theoretical results rely on Ca�arelli's regularity results for the optimal transport map for the quadratic
cost. I would like to prove that analogous results might hold if we allow plans for the embedding instead
of maps and consider actual discrete measures as in [11] so that the gap between theory and experiments
is bridged. Our previous regularity result for optimal plans in [11] would be useful for this purpose.
An algorithm that uses plans instead of maps constructed from plans should also o�er a much better
performance.

� Wasserstein depth. For a given measure µ and an absolutely continuous reference measure µ0 the
Monge-Kantorovich depth is de�ned as dMK(x, µ) = dT (T−1(x), µ0), where dT is the Tukey depth for the
reference measure µ0 and T is the optimal transportation map between µ0 and µ, namely

T = argminY :Y#µ0=µ

∫
|Y (x)− x|2dx.

I plan to study stability properties of the Monge-Kantorovich depth [7] with respect to the input measures
and to �nd rates of convergence of a minimizer for a discrete problem to the minimizer of the corresponding
continuum problem using optimal transportation tools, such as cyclical monotonicity and the stability of
optimal transportation with respect to input measures. This research direction is closely related to my
previous work on regularity of optimal transportation plans for rough measures (of which discrete measures
are a particular example) [11].
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