\qquad Course\# \qquad Prob.\# \qquad Date
\qquad , Da
\qquad

Signature \qquad
a) Rewrite:

$$
y^{\prime}+\frac{2}{t} y=4 t-3 \quad y(1)=0
$$

The only vale that andes the coefficient undetermined is $x=0$. Then the largest interment of definition that includes the mitinl condition is $(0, \infty)$.

An integrating functor is $e^{\int \frac{2}{t} d t}=e^{2 \ln t}=e^{\ln t^{2}}=t^{2}$
then

$$
\begin{align*}
& \frac{d}{d t}\left(t^{2} y\right)=(4 t-3) t^{2}=4 t^{3}-3 t^{2} \\
& t^{2} y=t^{4}-t^{3}+c \tag{5pt}
\end{align*}
$$

Because $y(1)=0$;

$$
0=(1)^{4}-(1)^{3}+c \text {, then } c=0 \text {. }
$$

The solution is

$$
\begin{equation*}
y=t^{2}-t \tag{4pt}
\end{equation*}
$$

b)

Rewrite:

$$
y^{\prime}+\frac{4 t}{\left(t^{2}-1\right)} y=\frac{1}{\left(t^{2}-1\right)^{2}} \quad y(0)=1
$$

The values that make the coefficient or for ing undetermined are $t=1$ or $t=-1$. Then the largest interval of definition for the solution given the initial condition is $(-1,1)$

$$
(1 p t)
$$

An integrating factor is

$$
e^{\int \frac{4 t}{\left(t^{2}-1\right)} d t}=e^{2 \int \frac{2 t}{\left(t^{2}-1\right)} d t}=e^{2 \ln \left(t^{2}-1\right)}=\left(t^{2}-1\right)^{2}
$$

then

$$
\frac{d}{d t}\left(\left(t^{2}-1\right)^{2} y\right)=\frac{1}{\left(t^{2}-1\right)^{2}}\left(t^{2}-1\right)^{2}=1
$$

then

$$
\left.\left(t^{2}-1\right)^{2} y=t+c\right) \quad(8 p t)
$$

Because $y^{(0)}=1 ; \quad\left(0^{2}-1\right)^{2}(1)=(0)+c$ then $c=1$.
the solution is

$$
y=\frac{t+1}{i t^{2}-i^{2}}
$$

\qquad Course\# \qquad Prob.\# \qquad 2. Date
\qquad
\qquad -

HONOR PLEDGE: I pledge on my honor that I have not given or received any unauthorized assistance on this examination or assignment.
Please write the exact wording of the pledge, followed by your signature, in the space below:
\qquad

Signature \qquad
a) Separate the equation:

$$
\begin{equation*}
\int(2 y+2) d y=\int\left(16 e^{2 x}-4 e^{x}\right) d x \tag{Apt}
\end{equation*}
$$

then $y^{2}+2 y=8 e^{2 x}-4 e^{x}+c$
Because $y(0)=1: \quad(1)^{2}+2(1)=8 e^{0}-4 e^{0}+c=4+c$
then $c=-1$
Then

$$
\begin{aligned}
& y^{2}+2 y=8 e^{2 x}-4 e^{x}-1 \\
& y^{2}+2 y+1=8 e^{2 x}-4 e^{x} \\
& (y+1)^{2}=8 e^{2 x}-4 e^{x}
\end{aligned}
$$

then $y=-1+\sqrt{8 e^{2 x}-4 e^{x}}$ where the sign was

$$
\begin{aligned}
& y=-1+\sqrt{8 e^{2 x}-4 e^{x}} \text { chosed based on } y(x)=(. \\
& y=-1+\sqrt{4\left(2 e^{2 x}-e^{x}\right)}=-1+2 \sqrt{\left(2 e^{2 x}-e^{x}\right)}
\end{aligned}
$$

we need that $2 e^{2 x}-e^{x}>0$
that is $e^{x}\left(2 e^{x}-1\right)>0$.
$e^{x}>0$ always so we only need $2 e^{x}-1>0$
them $\begin{aligned} 2 e^{x} & >1 \\ e^{x} & >\frac{1}{2}\end{aligned} \quad(1 p t)$ then $x>\ln \left(\frac{1}{2}\right)$.
The largest interval of definition is $\left(\ln \left(\frac{1}{2}\right), \infty\right)$
b)
separate

$$
\int 2 y d y=\int \frac{d x}{1+x}
$$

Hen $y^{2}=\ln |1+x|+c$
(Sst)
Because of $y(0)=-1: \quad(-1)^{2}=\ln |1+0|+c=c$
then $c=1$

Then $y= \pm \sqrt{\ln |1+x|+1}$
Because of the initial condition we need to take the negative
Sign:

$$
y=-\sqrt{\ln |1+x|+1}
$$

(2pt)
$x=-1$ can of be in the domain of definition of this formula, but we know that $x=0$ is (because of the initial condition).

Then the largest internal of detrition are all the wakes of x in $(-1, \infty)$ such that

$$
\text { i.e. } \quad \begin{gathered}
\ln (1+x)+1>0 \\
\ln (1+x)>-1 \\
1+x>e^{-1} \\
x>e^{-1}-1
\end{gathered}
$$

Then the largest intermal of definition for $(1 p t)$ the formula is

$$
\left(e^{-1}-i, \infty\right)
$$

\qquad Course\# \qquad Prob.\# 3 Date
\qquad
\qquad

HONOR PLEDGE: I pledge on my honor that I have not given or received any unauthorized assistance on this examination or assignment.
Please write the exact wording of the pledge, followed by your signature, in the space below:
\qquad

Signature \qquad -
a)

$$
\begin{aligned}
& \partial_{y} M=\partial_{y}\left(y+6 x^{2}\right)=1 \\
& \partial_{x} N=\partial_{x}(x \ln x-2 x)=\ln x+x \frac{1}{x}-2=\ln x-1
\end{aligned}
$$

then the equation is not exact
b) We need

$$
\partial y\left(\mu\left(y+6 x^{2}\right)\right)=\partial x(\mu(x \ln x-2 x))
$$

As $\mu=\mu(x)$, he have

$$
\begin{aligned}
& \mu \partial y\left(y+6 x^{2}\right)=\mu^{\prime}(x \ln x-2 x)+\mu(\ln x-1) \\
& \mu=\mu^{\prime}(x \ln x-2 x)+\mu(\ln x-1) \\
& 0=\mu^{\prime}(x \ln x-2 x)+\mu(\ln x-2) \\
& 0=\mu^{\prime}(\ln x-2) x+\mu(\ln x-2) \\
& 0=\mu^{\prime} x+\mu
\end{aligned}
$$

then $\frac{d \mu}{d x}=-\frac{\mu}{x}$ then $\frac{d \mu}{\mu}=-\frac{d x}{x}$
then $\ln |\mu|=-\ln |x|$ then $|\mu|=\frac{1}{|x|}$ (Apt)

So that $\mu=\frac{1}{x}$ is an intergnting factor
c) The equation to solve is

$$
\begin{gathered}
\frac{1}{x}\left(y+6 x^{2}\right) d x+\frac{1}{x}(x \ln x-2 x) d y=0 \\
\left(\frac{y}{x}+6 x\right) d x+(\ln x-2) d y=0 \\
H(x, y)=\int\left(\frac{y}{x}+6 x\right) d x=y \ln x+3 x^{2}+4(y) \quad(5, p t)
\end{gathered}
$$

We need

$$
\begin{gathered}
\partial y H=\ln x-2 \\
\partial y\left(y \ln x+3 x^{2}+4(y)\right)=\ln x-2 \\
\ln x+h^{\prime}(y)=\ln x-2
\end{gathered}
$$

them $h^{\prime}(y)=-2$, then $h(y)=-2 y$.
The general solution is

$$
\begin{equation*}
y \ln x+3 x^{2}-2 y=c \tag{5pt}
\end{equation*}
$$

\qquad Course\# \qquad Prob.\# 4 Date
\qquad
\qquad

HONOR PLEDGE: I pledge on my honor that I have not given or received any unauthorized assistance on this examination or assignment.
Please write the exact wording of the pledge, followed by your signature, in the space below:
\qquad

Signature \qquad
a)

The initial inlue problem to solve is

$$
\frac{d p}{d t}=0.1 p-9000
$$

$$
\begin{aligned}
p(0)= & 100000 \\
& (5 p t)
\end{aligned}
$$

Rewrite:

$$
\frac{d p}{d t}-0.1 p=-9000
$$

An integrating factor is $e^{\int(-0.1) d t}=e^{-0.1 t}$
then

$$
\frac{d}{d t}\left(e^{-0.1 t} p\right)=-9000 e^{-0.1 t}
$$

then $e^{-0.1 t} p=\frac{-9000}{-0.1} e^{-0.1 t}+c$
then

$$
e^{-0.1 t} p=90000 e^{-0.1 t}+c
$$

Because $p(0)=100000$:
$\left(e^{0}\right) 100000=90000\left(e^{i}\right)+c$ them $c=10000$
The required formula is (solving for p):

$$
p=\left[90000 e^{-0.1 t}+10000\right] e^{0.1 t}
$$

$$
p=90000+10000 e^{0.1 t} \quad(5 p t)
$$

b) If the (5 ante at which the flock con en mosquitoes is represented by A, them (from al):

$$
e^{-0.1 t} p=\frac{A}{0.1} e^{-0.1 t}+C
$$

so that

$$
p=\frac{A}{0.1}+C e^{0.1 t}
$$

For the population to be decreasing we need that $c<0$.
At time $t=0$ we have:

$$
100000=p(0)=\frac{A}{0.1}+C \quad \text { then } c=100000-\frac{A}{0.1}
$$

then me need thin

$$
100000-\frac{A}{D .1}<0
$$

then $10000<A$
The birds heed to eat more than 10000 mosgitoes weekly.

