MATH246 Summer II
 QUIZ 8

Name:

Consider the nonlinear planar system

$$
x^{\prime}=-3 x+y, \quad y^{\prime}=-2 x-y-5 x^{2} .
$$

1. This system has two stationary solutions. Find them.
2. Find the linearization about each stationary solution.
3. Classify the type of each linearization.
4. Sketch the phase-plane portrait of the system near each stationary solution.
5. Need to sole

$$
\begin{align*}
& 0=f(x, y)=-3 x+y \tag{2}\\
& 0=g(x, y)=-2 x-y-5 x^{2} \tag{2}
\end{align*}
$$

Rom (2): $y=3 x$
substitute into (it): $-2 x-3 x-5 x^{2}=0$

$$
-5 x-5 x^{2}=0
$$

$$
5 x(1+x)=0
$$

then $x=0$ or $x=-1$
if $x=0$, then from (1): $y=0$
if $x=-1$, then from (ii): $-3(-1)+y=0$

$$
\begin{gathered}
3+y=0 \\
y=-3
\end{gathered}
$$

The stationary solutions are $(0,0),(-1,-3)$.
2. We have

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=-3 & \frac{\partial f}{\partial y}=1 \\
\frac{\partial f}{\partial x}=-2-10 x & \frac{\partial g}{\partial y}=-1
\end{array}
$$

then about $(0,0)$:

$$
\frac{d}{d t}\binom{\hat{x}}{\hat{\jmath}}=\left(\begin{array}{rr}
-3 & 1 \\
-2 & -1
\end{array}\right)\binom{\hat{x}}{\hat{\jmath}}
$$

And a bout $(-1,-3)$:

$$
\frac{d}{d t}\binom{\hat{x}}{\hat{y}}=\left(\begin{array}{cc}
-3 & 1 \\
8 & -1
\end{array}\right)\binom{\hat{x}}{\hat{y}}
$$

3.

For $(0,0)$:

$$
\begin{aligned}
& A=\left(\begin{array}{rr}
-3 & 1 \\
-2 & -1
\end{array}\right) \quad \text { then } p_{A}(z)=\operatorname{det}(z 1-A) \\
&=\operatorname{det}\left(\begin{array}{cc}
z+3 & -1 \\
2 & z+1
\end{array}\right) \\
&=(z+3)(z+1 \\
&=z^{2}+4 z+ \\
&=(z+2)^{2}+1
\end{aligned}
$$

Hen $\lambda_{1}=-2+i$

$$
\lambda_{2}=-2-i
$$

this system is a spiml sink (spiral because. eighnnlues are: and a sinh ben the val part of composite pair is

For $(-1,-3)$

$$
\begin{aligned}
A=\left(\begin{array}{cc}
-3 & 1 \\
8 & -1
\end{array}\right) \quad & p_{A}(z)=\operatorname{det}(z I-A)=\operatorname{det}\left(\begin{array}{cc}
z+3 & -1 \\
-8 & z+ \\
& =(z+3)(z+1)-8=z^{2}+4 z-5=(z+1
\end{array}\right.
\end{aligned}
$$

fun $\lambda_{1}=-5, \lambda_{2}=1$

The associsted eigurnalus can be and using:

$$
\begin{aligned}
& \left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right)=0=\left|A-\lambda_{2} I\right|\left(A-\lambda_{1} I\right) \\
& \left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right)=\left(\begin{array}{ll}
2 & 1 \\
8 & 4
\end{array}\right)\left(\begin{array}{rr}
-4 & 1 \\
8 & -2
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

then $\left(-5,\binom{1}{-2}\right)$ is an eigupniv

$$
\left(A-\lambda_{2} I\right)\left(A-\lambda_{1} Z\right)=\left(\begin{array}{cc}
-4 & 1 \\
8 & -2
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
8 & 4
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

then $\left(1,\binom{1}{4} 1\right.$ is an eigenpaiv.
The linear system comespond to a saddle. (twodi eigenm
4. For $(0,0)$:

For $(-t,-3)$.
(eigenntle -5)
The stable line is defines by the vector $\binom{1}{-2}$ The unstable line is defined by the veter $\left(\begin{array}{l}1 \\ 4\end{array}\right.$ (eigenative 1).

Hen:

